On the square root of quadratic matrices

author

  • A. Zardadi Department of Mathematics‎, ‎Payame Noor University (PNU)‎, ‎P.O‎. ‎Box 19395-4697‎, ‎Tehran‎, ‎Iran
Abstract:

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the spectra of some matrices derived from two quadratic matrices

begin{abstract} The relations between the spectrum of the matrix $Q+R$ and the spectra of the matrices $(gamma + delta)Q+(alpha + beta)R-QR-RQ$, $QR-RQ$, $alpha beta R-QRQ$, $alpha RQR-(QR)^{2}$, and $beta R-QR$ have been given on condition that the matrix $Q+R$ is diagonalizable, where $Q$, $R$ are ${alpha, beta}$-quadratic matrix and ${gamma, delta}$-quadratic matrix, respectively, of ord...

full text

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

full text

On Generating Functions Involving the Square Root of a Quadratic Polynomial

Many familiar counting sequences, such as the Catalan, Motzkin, Schröder and Delannoy numbers, have a generating function that is algebraic of degree 2. For example, the GF for the central Delannoy numbers is 1 √ 1−6x+x2 . Here we determine all generating functions of the form 1 √ 1+Ax+Bx that yield counting sequences and point out that they have a unified combinatorial interpretation in terms ...

full text

Square Root on Chip

Three algorithm implementations for square root computation are considered in this paper. Newton-Raphson's, iterative, and binary search algorithm implementations are completely designed, verified and compared. The algorithms, entire system-on-chip realisations and their functioning are described.

full text

On generalized quadratic matrices

Abstract Extending an approach considered by Radjawi and Rosenthal (2002), we investigate the set of square matrices whose square equals a linear combination of the matrix itself and an idempotent matrix. Special attention is paid to the Moore-Penrose and group inverse of matrices belonging to this set. References: Radjavi, H. and P. Rosenthal (2002). On commutators of idempotents. Linear and M...

full text

On the semigroup of square matrices

We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated e...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 08  issue 03

pages  211- 214

publication date 2019-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023